

Contribution and take-home message

- Obtaining head-pose through keypoints is fragile and suboptimal.
- Using a deep network trained with a binned pose classification loss and a pose regression loss on a large dataset obtains state-of-the-art results which generalize to different datasets.
- Our method coupled with data augmentation is effective in tackling head pose estimation in low-resolution conditions.

On the Fragility of Landmark-To-Pose

Landmark to pose methods are sensitive to:

- Noise of landmark points
- Shape of mean head model
- Alignment algorithm
- Accuracy of landmark detector

Meanface model, width change

Fine-Grained Head Pose Estimation Without Keypoints

Nataniel Ruiz, Eunji Chong, James M. Rehg **Georgia Institute of Technology**

Our Method

Different fully-connected layer for each Euler angle. We use a linear combination of a binned pose classification loss and a regression loss.

 $\mathcal{L} = H(y, \hat{y}) + \alpha \cdot MSE(y, \hat{y})$

Where H and MSE respectively designate the crossentropy and mean squared error loss functions.

Examples

Multi-Loss ResNet50 ($\alpha = 2$) Multi-Loss ResNet50 ($\alpha = 1$) **KEPLER** [14]† Multi-Loss ResNet50 ($\alpha = 1$) 3DMM+ Online [33] * FAN [2] (12 points) Dlib [11] (68 points) 3DDFA [35] Table 2. Mean average error ods on the BIWI dataset [6]. tion. † Trained on AFLW

Experiments

	Yaw	Pitch	Roll	MAE
	5.167	6.975	3.388	5.177
	4.810	6.606	3.269	4.895
	8.084	17.277	16.196	13.852
†	5.785	11.726	8.194	8.568
	2.500	1.500	2.200	2.066
	8.532	7.483	7.631	7.882
	16.756	13.802	6.190	12.249
	36.175	12.252	8.776	19.068
of Euler angles across different meth-				
. * These methods use depth informa-				